انتقال انرژی الکتریکی:
فرآیند جابجایی توان الکتریکی را انتقال انرژی الکتریکی گویند. این فرآیند معمولاً شامل انتقال انرژی الکتریکی از مولد یا تولید کننده به پستهای توزیع نزدیک شهرها یا مراکز تجمع صنایع است و از این پس یعنی تحویل انرژی الکتریکی به مصرف کنندهها در محدوده توزیع انرژی الکتریکی است. انتقال انرژی الکتریکی به ما اجازه میدهد تا به سادگی و بدون پذیرفتن هزینه حمل سوختها و همچنین جدای از آلودگی تولید شده از سوختن سوختها در نیروگاه، از انرژی الکتریکی بهره بگیریم. حال آنکه در بسیاری موارد انتقال منابع انرژی مانند باد یا آب سدها غیر ممکن است و تنها راه ممکن انتقال انرژی الکتریکی است.
به علت زیاد بودن میزان توان مورد بحث، ترانسفورماتورها کمابیش در ولتاژهای بالایی کار میکنند(۱۱۰ کیلوولت یا بیشتر). انرژی الکتریکی معمولاً در فواصل دراز به وسیله خطوط هوایی انتقال مییابد. از خطوط زیر زمینی فقط در مناطق پر جمعیت شهری استفاده میشود و این به دلیل هزینه بالای راهاندازی و نگهداری و همچنین تولید توان راکتیو اضافی در این گونه خطوط است.
امروزه خطوط انتقال ولتاژ، بیشتر شامل خطوطی با ولتاژ بلاتر از ۱۱۰ کیلوولت میشوند. ولتاژهای کمتر، نظیر ۳۳ یا ۶۶ کیلوولت به ندرت و برای تغذیه بارهای روشنایی در مسیرهای طولانی مورد استفاده قرار میگیرند. ولتاژهای کمتر از ۳۳ کیلوولت معمولاً برای توزیع انرژی الکتریکی مورد استفاده قرار میگیرند. از ولتاژهای بیشتر از ۲۳۰ کیلوولت با نام "ولتاژهای بسیار بالاً (extra high voltage) یاد میشود چرا که بیشتر تجهیزات مورد نیاز در این ولتاژها با تجهیزات ولتاژ پایین کاملاً متفاوتند.
تاریخچه:
سالها پیش یعنی در سالهای آغازین بهره گیری از انرژی الکتریکی، انتقال توان با همان ولتاژمصرف کنندهها انجام میگرفت و این به دلیل استفاده از توان الکتریکی به صورت DC بود، چرا که در آن زمان هیچ راهی برای افزایش ولتاژ DC وجود نداشت و از آنجا که انواع مختلف مصرف کنندهها مثل لامپها یا موتورها نیازمند ولتاژهای مختلفی بودند برای هر یک باید از ژنراتوری جداگانه استفاده میشد که این خود امکان استفاده از یک شبکه بزرگ برای تغذیه کلیه مصرف کنندهها را از بین میبرد.
در جلسه گروه AIEE در ۱۶ می۱۸۸۸ نیکولا تسلا مقالهای را با نام «سیستم جدید موتورها و ترانسفورماتورهای متناوب» ارایه کرد و به بیان مزایای استفاده از این سیستم پرداخت. مدتی بعد شرکت «وستینگ هوس» پیشنهاد ساخت اولین سیستم جریان متناوب را داد.
با استفاده از ترانسفورماتور امکان اتصال مولدها به خطوط انتقال ولتاژ بالا و همچنین امکان اتصال خطوط ولتاژ بالا به شبکههای محلی توزیع فراهم شد. با انتخاب فرکانسی مناسب امکان تغذیه انواع بارها از جمله روشناییها و موتورها ایجاد میشد. مبدلهای گردان و بعدها لامپهای قوس جیوه و دیگر یکسو کنندههای جریان امکان اتصال مصرف کنندههای DC را با استفاده از یک نوع یکسو ساز به شبکه مهیا میساختند. حتی مصرف کنندههای با فرکانسهای متفاوت هم میتوانستند با استفاده از مبدلهای گردان به شبکه متصل شوند. با استفاده از نیروگاههای متمرکز برای تولید برق همچنین امکان صرفهجویی به وسیله تولید انبوه فراهم شد و ضریب بار در هر نیروگاه امکان تولید با راندمان بالاتر را نیز ایجاد کرد به طوریکه امکان استفاده از برق با قیمت کمتری برای مصرف کنندهها فراهم شد. بدین ترتیب امکان به وجود آمدن یک شبکه بزرگ برای تغذیه انواع مختلفی از مصرف کنندهها پدید آمد.
با استفاده از نیروگاههای چند برابر بزرگتر که به منطقه بزرگی اتصال داده شده بودند، قیمت تمام شده تولید برق کاهش یافت و امکان استفاده از نیروگاههای با راندمان بالاتر فراهم شد که میتوانستند بارهای مختلف را تغذیه کنند. همچنین بدین ترتیب ثبات تولید برق افزایش پیدا کرد و هزینه سرمایه گذاری در این بخش کاهش یافت و در نهایت امکان استفاده از منابع انرژی دور افتاده مثل نیروگاههای هیدروالکتریک و یا زغال سنگ معادن دور دست، بدون نیاز به پرداخت هزینه حمل و نقل سوختها فراهم شد.
در خطوط انتقال ابتدایی از مقرههای «pin-and-sleeve» استفاده میشد. این مقرهها شبیه مقرههایی هستند که امروزه برای خطوط تلفن هوایی مورد استفاده قرار میگیرد. استفاده از این مقرهها دارای محدودیت بود چراکه تا ولتاژ ۴۰ کیلوولت قابل استفاده بودند. در سال ۱۹۰۷ ابداع مقرههای بشقابی به وسیله هارولد باک (Harold W. Buck) از شرکت «Niagara Falls Power» امکان استفاده از مقرهها در ولتاژهای بالاتر را هم فراهم آورد به طوری که اولین خط انتقال برای مقادیر بالای انرژی الکتریکی در ایالات متحده بین نیروگاه هیدروالکتریک آبشار نیاگارا و «بافالو» در نیویورک به وجود آمد. هم اکنون تندیس نیکولا تسلا برای قدردانی از همکاری او در راه انتقال انرژی الکتریکی در کنار آبشار نیاگارا قرار دارد.
در طول قرن بیستم ولتاژ انتقال رفته رفته افزایش یافت. در سال ۱۹۱۴ پنجاه پنج خط انتقال با ولتاژ بیش از ۷۰ کیلوولت درحال استفاده بودند که در این میان بیشترین ولتاژ انتقال ۱۵۰ کیلوولت بود. اولین خط انتقال سه فاز نیز با ولتاژ ۱۱۰ کیلو در آلمان بین لاچهامر و ریزا در سال ۱۹۱۲ راهاندازی شد. در هفدهم آوریل ۱۹۲۹ اولین خط انتقال ۲۲۰ کیلوولت در آلمان به بهرهبرداری رسید که در مسیرش از نزدیکی چهار شهر عبور میکرد. در این خط دکلها برای افزایش ولتاژ احتمالی تا ۳۸۰ کیلو ولت ساخته شده بودند. اولین خط انتقال ۳۸۰ کیلوولت در سال ۱۹۵۷ ساخته شد، ده سال بعد یعنی در سال ۱۹۶۷ اولین خط انتقال با ولتاژ بسیار بالای ۷۳۵ کیلوولت ساخته شد. در نهایت در سال ۱۹۸۲ در اتحاد جماهیر شوروی خط انتقالی با ولتاژ ۱۲۰۰ کیلوولت ساخته شد؛ این ولتاژ بیشترین ولتاژ مورد استفاده قرار گرفته در خطوط انتقال در جهان است. علت استفاده از چنین ولتاژ در شوروی پهناور بودن این کشور نسبت به تراکم شهرها بود.
شتاب بالای صنعتی شدن در قرن بیستم به سرعت انرژی الکتریکی را به یکی از زیر بناهای مهم اقتصادی در کشورهای صنعتی بدل کرد. بدین گونه ژنراتورهای محلی و شبکههای کوچک توزیع به سرعت جای خود را به شبکههای بزرگ تولید و انتقال انرژی دادند. با آغاز جنگ جهانی اول به شتاب این تغییرات افزوده شده و دولتها به سرعت شروع به ساخت نیروگاههای بزرگ برای تولید انرژی الکتریکی مورد نیاز در کارخانههای اسلحه سازی کردند. بعدها از این نیروگاهها برای تغذیه مصرف کنندههای شهری استفاده شد.
انتقال انرژی در مقیاسهای کلان:
مهندسین طراح خطوط انتقال در محاسبات مربوط به طراحی این خطوط، میزان توان انتقال یافته را تا جای ممکن افزایش میدهند، البته ملاحظات و محدودیتهایی نیز مانند ایمنی شبکه، امکان گسترش شبکه، محدودیتهای مربوط به مسیر و... در طراحی شبکهها مدنظر قرار داده میشود.
راندمان خطوط انتقال با افزایش ولتاژ افزایش مییابد، چراکه این کار باعث کاهش یافتن جریان میشود. در انتقال توان با مقیاس زیاد راندمان دارای اهمیت بسیار بالایی است و تلفات بیشتر از استاندارد میتواند خسارت زیادی به یک شبکه وارد کرده و یا حتی اسفاده از آن را غیر اقتصادی کند و این اهمیت محاسبات و استانداردهای مربوط به تلفات را افزایش میدهد. بنابر این تلفات خطوط انتقال از پارامترهای اصلی محاسبات شبکه هستند.
به طور کلی شبکه انرژی الکتریکی از نیروگاه یا تولیدکننده، مدار یا شبکه انتقال و پستهای تغییر ولتاژ تشکیل شدهاست. انرژی معمولاً در طول خطوط انتقال به صورت سه فاز AC جابهجا میشود. استفاده از جریان DC برای انتقال نیازمند تجهیزات پرهزینه برای تبدیل نوع جریان است. البته استفاده از این تجهیزات برای بعضی طرحهای بزرگ قابل توجیهاست. استفاده از انرژی الکتریکی به صورت تک فاز AC تنها در توزیع به مصرف کنندههای خانگی و اداری کاربرد دارد چراکه در صنایع به دلیل استفاده از موتورهای سه فاز استفاده از انرژی الکتریکی به صورت سه فاز بهصرفهتر است. البته استفاده از سیستمهای با بیشتر از سه فاز نیز برای برخی کاربردهای خاص رایج است.
توان ورودی شبکه:
در نیروگاهها توان الکتریکی با ولتاژ نسبتاً کمی (در نهایت ۳۰ کیلوولت) تولید میشود و سپس به وسیله ترانسفورماتورهای پست قدرت با توجه به طول مسیر و دیگر ملاحظات شبکه تا ولتاژی بین ۱۱۵ تا ۷۶۵ کیلوولت (در ایران این ولتاژ معمولاً ۴۰۰ کیلو ولت است) افزایش مییابد تا امکان انتقال آن در طول مسیرهای طولانی فراهم شود.
خروجی شبکه انتقال:
با نزدیک شدن خطوط انتقال به شهرها و مراکز تجمع جمعیت برای ایجاد ایمنی، ولتاژ در چند مرحله کاهش مییابد. مراحل کاهش یافتن ولتاژ در شبکههای استاندارد ایران به ترتیب از kV۲۳۰/۴۰۰، kV۱۳۲/۲۳۰، kV۶۳/۱۳۲ و kV۲۰/۶۳ است. در مرحله نهایی یا مرحله توزیع ترانسفورماتورهای توزیع ولتاژ را از kV۲۰ به برق مصرفی یا ۲۳۱/۴۰۰ ولت کاهش میدهند. در دیگر کشورها نیز ولتاژ مصرفکنندهها بین ۱۰۰ تا ۶۰۰ ولت است.
محدودیتها:
مقدار توان قابل انتقال در یک خط انتقال یک مقدار محدود است و این محدودیت به ویژه با توجه به طول خط انتقال تغییر میکند. برای یک خط انتقال کوتاه حرارت تولید شده بر اثر عبور جریان محدودیتی را ایجاد میکند چرا که هرچه حرارت سیمها بیشتر شود بیشتر خم میشوند و بیشتر به زمین نزدیک میشوند که این نزدیکی به زمین در نهایت میتواند خطر آفرین شود همچنین ممکن است هادیها بر اثر عبور جریان بالا ذوب شوند.
برای خطوط انتقال با طول متوسط (حدود ۱۰۰ کیلومتر) محدودیت بیشتر در رابطه با میزان افت ولتاژ در طول خط است و در خطوط انتقال طولانی مهمترین مسئله حفظ ثبات در شبکهاست. زاویه بین فازها در یک سیستم سه فاز مقادیری ثابت است که تغییر بیش از حد آن در قسمتی از شبکه میتواند به بیثباتی در کل شبکه الکتریکی بیانجامد و در طول خطوط انتقال بسیار طولانی اختلاف فاز با توجه به توان و تولید شبکه تغییر میکند و این نکته موجب محدودیت در میزان جریان قابل انتقال در یک خط طولانی انتقال خواهد شد. برای بهبود ضریب توان در طول خطوط انتقال از تجهیزات اصلاح ضریب توان مانند خازنها استفاده میشود. در خطوط انتقال HVDC محدودیتی در رابطه با ضریب توان خط وجود ندارد و تنها محدودیت مربوط به افت ولتاژ و تلفات ژولی خط میشود.
HVDC
انتقال با جریان مستقیم یا اچویدیسی برای انتقال انرژی الکتریکی در مقیاسهای بسیار بزرگ و در طول مسیرهای طولانی یا برای اتصال دو شبکه ناهماهنگ AC مورد استفاده قرار میگیرد. زمانی که انتقال انرژی الکتریکی باید در مسیرهای طولانی صورت گیرد، انتقال به صورت DC به علت کمتر بودن تلفات اقتصادیتر است. در این حالت کاهش تلفات و هزینههای مربوط به آن میتواند هزینه تبدیل انرژی الکتریکی از AC به DC را جبران کند.
از دیگر مزایای استفاده از با ثبات کردن دو شبکه اتصال AC متفاوت است. در صورتی که دو شبکه AC متفاوت برای مثال متعلق به دو کشور متفاوت به هم اتصال پیدا میکنند به علت ناهماهنگی شبکهها ممکن است این اتصال با مشکلاتی نظیر ایجاد بی ثباتی در شبکه همراه باشد اما با استفاده از سیستم اچویدیسی این مشکل بر طرف خواهد شد، بدین ترتیب که در کشور فروشنده انرژی، انرژی الکتریکی به صورت DC درآمده و پس از طی مسیر انتقال در کشور مصرف کننده دوباره به صورت AC بازمیگردد.
خط انتقال هوایی:
خط انتقال هوایی نوعی از خط انتقال است که در آن از دکلها و تیرها برای نگه داشتن کابلها بالای سطح زمین استفاده میشود. از انجایی که در این گونه خطوط از هوا به عنوان عایق کابلها استفاده میشود این روش انتقال یکی از کم هزینهترین و رایجترین روشهای انتقال است. دکلها و تیرهایی که برای نگهداشتن کابلها استفاده میشود میتوانند از جنس چوب، فولاد، بتون، آلمینیوم و در برخی موارد پلاستیک مسلح باشند. به طور کلی کابلها مورد استفاده در خطوط هوایی از جنس آلمینیوم هستند (که البته با نواری از فولاد در داخل مسلح شدهاند). از کابلهای مسی در برخی خطوط انتقال ولتاژ متوسط و ولتاژ پایین و محل اتصال به مصرفکننده استفاده میشود.